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examined.



r - .~r r~rr r• -. -

CENTER FOR STOCHASTIC PROCESSES

AFOSR.TK. 8 7- 34

Department of Statistics
University of North Carolina
Chapel Hill, North Carolina -.-

0,

p.

STATISTICS FOR THE TWO-SAMPLE SURVIVAL ANALYSIS PROBLEM

BASED ON PRODUCT LIMIT ESTIMATORS OF THE SURVIVAL FUNCTIONS

by

Margaret O'Sullivan

and 0

Thomas R. Flemirng.,

't

Technical Report No. 163

November 1986

.- 3 >

% - o" . d' a a
' 
". J .P "r ,. J''." "; ". ' " " " ," -" r .- ¢. . . , ,,- - ,. .- - ,-,; - . . .. _. . . . ,,, ...- ,, .- .. -" - .

:% ".;-" . % 2: • ? "': i'.2i --,i.". Z ., .,-.i.. i .. ,. , ..)-"i.-- -,," ":?- . ":'g - ", "" '. -:-:P," '- -



.4.

% A
%. -C
* 45~

'C.

.4

SW'

.4' 4d
4-.

S.'

4-
4~4

4~4~

.q. -

SW
~4 S

44

SW .4
4-

* 4..

4.' -
* S.

0
-- 4-

4 '4

54%
4.

SW'

4-4

-S... '4

4-'.,

444)

#'~~~
A

W.V.,

0
'V

.4-

-5-.,

4%
'-5

'V S'\~~.'~t~J <§t<-.:Y-.>2.§~§-$.IX§x-t:Itt§.§.:sI~§.s p p . . . . - .4. - - . .. . .-LLEtu: .~. ~
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Summary q. .
A class of statistics for the two-sample survival

analysis problem is introduced. The SW-statistic may be written
as the integral of a weighted difference in the estimated
survival functions, the integral being with respect to Lebesgue
measure on time. Since the integral is with respect to real-time
the statistics are not generalized rank-statistics. However,
with an appropriate choice of weight function they are non-
parametric in the sense that weak convergence is guaranteed for
any underlying configuration of survival and censoring
distributions.

Asymptotic distribution theory under the null is derived.
Consistency under a fixed alternative is shown. Efficacy
expressions under natural sequences of local alternatives are
given and an expression for the most efficient weight function is
developed. The asymptotic efficiencies of some specific SW-
statistics under the proportional hazards alternative are
examined.
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INTRODUCTION

Various nonparametric test procedures for the two-sample

censored data survival analysis problem have been proposed.

These include the weighted logrank tests (Gill 1980), their

supremum versions (Fleming, Harrington and O'Sullivan 1986), a

generalized Smirnov test (Fleming et al. 1980) as well as the

orthogonal-score-statistics procedure of Breslow, Edler and

Berger (1984). These procedures are based on generalized rank

statistics and hence they are certainly robust. Indeed, because

they are based on ranks they are invariant under monotone

increasing transformations of the data. However, such invariance

is not always a desirable feature (O'Sullivan 1986). A

difference which is large may become negligible under a monotone

increasing transformation of the data (Figure 1). Hence rank-

statistics will not distinguish the two situations of Figure 1 in

their powers and yet intuitively in applications one would expect

a reasonable test procedure to detect the larger difference with

more power than the smaller difference. A class of non-rank-

based, nonparametric test procedures for this problem is proposed

here. The test statistics reduce to the scaled difference of two

generalized L-statistics in uncensored data. (The generalization

allows random as well as deterministic weight functions in the

usual definition of L-statistics).

The basic set-up and notation along with the SW-

statistics themselves are introduced in section 1. Section 2 is

concerned with asymptotic distribution theory for the numerator

and consistency results for the denominator of the SW-statistic.

55
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.4 In section 3 these results are exploited to yield null

distribution theory, consistency under a fixed alternative and an

expression for the efficacy under a sequence of local

S. alternatives. Finally, since these statistics are indexed by a

set of weight functions, the choice of an efficient weight

function is discussed in section 4.

1. DEFINITIONS AND ASSUMPTIONS

Let ((Xij,Uij); j = 1,...,ni; i = 1,2) be 2n independent

positive random variables where n = n, + n 2. For i = 1 and 2,

suppose Xij and Uij have (right continuous) survival functions

S j( *) and C j( *) respectively. As is usual, X i j, U and Xij

min(Xij, Uij) will be termed the survival time, censoring time

and observation time random variables respectively for individual

j in group i. We wish to test the null hypothesis

H 0
' S S 2(.) based on the data (Xij, I[Xij -5 U i];

j = l,...n i - 1,2), where I[A] denotes the indicator function

of the set A. This is the simple two-sample censored data

survival analysis problem under random censorship.

We will assume throughout that S i(') i = 1,2 are

continuous, (though not necessarily absolutely continuous). On

the other hand we allow the C i(') i = 1,2 tc be arbitrary
7,

monotone decreasing functions on [0, o) with C i(0) = 1. Thus

improper censoring distributions are allowed.

Let S i ( ' ) and Ci(') denote the Kaplan-Meier estimators of

the survival functions S i(') and C i(') respectively. Define

.Ani Si .,'A. ka
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T = sup(t: ((S 1(t) V S 2 (t)) A C 1 (t) A C 2(t)) > 0) where xvy

denotes max(x,y) and x y denotes min(xy). Both S 1 and S 2 are

*t 'well-estimated' on [0,TCI in the sense that for i = 1 and 2

E(S (t)I(t _5T]) = E(S i(t)I[t 5 Tc).

Thus [0,T c] is a natural interval on which to compare S , and S 2-

The interval [0,T c] includes the interval [0,T] where

T = T 1 A T 2 and T = sup(t: (S i(t) A C i(t)) > 0). Only

information on [0,T] is used by the generalized rank procedures

mentioned above. Since the generalized rank procedures in

essence compare hazard functions, and hazard functions in both

qroups can only be estimated when the risk sets in both groups

are non-empty (i.e. on [0,T]), then [0,T] is the natural interval

to use for these procedures. However, the interval [0,T ] is

more appropriate for procedures which compare survival functions.

Let W(-) be a random weight function, measurable with

respect to o(X j, I(X i _ U ij); j = l,...,ni; i = 1,2,) where

a(A) is the o-algebra generated by A. (W() estimates an

underlying deterministic lebesgue measurable weight function W(.)

in a sense to be defined shortly). We define a member of the SW-

class of statistics to be

n ln 2
sw = (U)(S 1( - S 2 (u) )du.

n 1 + n 2
,0

We will propose test procedures for the two-sample censored data

survival analysis problem which are based on these statistics.

Note that by a simple integration by parts, SW can be written as

-- - . , '''- .-



[- .4..

2 T 1
n 1n 2 t A tS( I W (v) dv) dS 2(t M ( I W (v) dv) dS (t)
n'. 1n + n 20 0..J ." n n 2

in uncensored data, which is the difference of two

L-statistics if W is deterministic.

2. DISTRIBUTION THEORY FOR SW

Initially we will consider the component of SW from the

i t h group

-n W(u)(Si(u) - Si(u))du.
0

For ease of notation the subscript i will be dropped for now. We

seek distribution theory not only under the null but also under a

fixed alternative and under a sequence of local alternatives.

Thus we allow the configurations (S n, C n, W n) to vary with n the

sample size.

Let T n be the population parameter corresponding to T.

*.. Thus

n Tn = sup(t: S n(t) A C n(t) > 0}

*'' and for some limiting survival functions S(.) and C(.)

T= sup~t: S(t) A C(t) > 0)1.

4I We require that

(Al) Tn 5 T and lim T n = T.
n- . n

Indeed in most cases of practical interest Tn = TV n.

Convergence of the configurations is also required in the sense

that for the survival functions S(.) and C(.), and the weight

-'V



function W(.),

im Wn(t) - W(t) I ) = 0

(A2)
lim S n(t) = S(t) and lim C n(t) = C(t) V t e [0, 7]

Assumptions which are to remain in effect unless otherwise

specified will be denoted by (A#) throughout the text, where # is

an integer.

The following theorem, which is basic in the derivation

of asymptotic distribution theory for SW, is a generalization of

Theorem 2.1 of Gill (1983). The proof follows the steps of

Gill's proof quite closely and hence will not be presented here.

Instead the reader is referred to Appendix 2 of O'Sullivan

(1986), wherein a detailed proof is given.

Theorem 2.1

Let h n, n = 1,2,... and h be non-negative, non-

increasing, continuous, bounded functions on [0, 7 n] n = 1,2,...

and C0, T] respectively. Assume that

V

lim hn(t) = h(t) 0 5 t T,
n cD

J d S(v) = ,2 < o, and
J0 (S(v)) 2(C(v)) -

Io r'  h n(v) )2

lim ,2 = lir - dS (v) = 2
ni. n nl m (S (v)) 2(C n(v)) - S



.1k ,i

(S -. (t) S (t)) ( AT dS (v)
. I f Z n(t ) = - (n a n d Z (t )= B - ( S _ _V _2 _C _ _VS n(t) (S(v)) 2(C(v))

for a standard Brownian motion B, then on D[O, mJ

(h (t A T) Zn(t A T)) => h(t A T) Z-(t A T).

If also

li rT d(h n(v) - h(v)) = 0 V t < T

then on D[0, a]

• h n(v) dZ n(v) > h (v) dZ 0(v)

and

(22) A T A> A(2.2) To Z n(v )dh n(v) To Z '(v) dh (v)

where, by definition

r0 h(v)dZ (v) h(s)Z (s) - Z 00(v)dh(v)

Conclusion (2.2) is most useful in determining asymptotic

7 distribution theory for SW.

Corollary 2.3

Suppose

(2.4) iim W n(u)S n(u)du = W(u)S(u)du <

. -.- .-. . . - - . -" . . -



yl';:T n  W n(v) IS ncv dv) 2

. (2.5) lim - I _ _ _ _ _ _ _ _ _ _ _dS n(u)n o0 (S n(u)) 2(C n(u)) "

[-T (j1  IW(v) IS (v) dv)

= - dS (u) <
0 (S(u)) 2(C(u)) "

then on C[0, D]

(2.6) U () = -n Wn(u)(S (u) - Sn(u))du => U 0 ()

where U(-) is a mean zero Gaussian process with variance

function

S tT 32t AT W W(v) S (v) dv)
~u

[: 2 (t) = - - dS (u)
JO, 0 (S(u)) 2(C(u) -

Proof.

Let h n(u) = Wn(v)S n(v)dv and h(u) = W(v)S(v)dv.

Then U n(t) = Z T(u)dh n(u). If the weight function W n( ) is

positive then the conclusion follows from (2.2) of Theorem 2.1,

with U4(t) = Zo(u)W(u)S(u)du. The result also holds, if

W () is not necessarily positive as is shown in Theorem 2.3.1

of O'Sullivan (1986).

We now introduce the time-point TV" If 7j - Tj.

i,i' = 1 or 2, i i, define

T Tis if S j( T ) = 0 and C j( Ti) > 0
S i otherwise



In almost all cases by Lemma A.1 T, is the limiting form of T c

P P
in that T C T C. Indeed in general T ' T C c

Since Un( .) is tight in C(O, w], Theorem 4.2 of Billingsley

(1968) allows replacement of (2.6) with

':"I- TI T c T

-"n Wn(u) (S(u) - S (u))du => U C)

For the remainder of this paper, unless otherwise specified we

assume that

(A3) T < and W( t) 0 1 <

where I is the supremum norm over the set A. Certainly the

condition that T < w is always true in practice. The techniques

used in this paper are heavily dependent on the boundedness of

W(.) and further work will be necessary to generalize the results

to include random weight functions in SW which are unbounded in

the limit. Note however that Corollary 2.3 which deals with

deterministic weight functions is general enough to allow

unbounded deterministic weight functicns.

Now we replace the deterministic weight function W n(.)

with its estimator W(.) a random weight function. Suppose

..:: (IIW(.) - w(.) COTo &n

Lemma 2.7

If
(u) W - w (u)

(2.8) W 0

then

*t4-. . . . - . . . . - - .- . - -

4 ~ -. -. . . .
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T'T I Cc (W(U - S( ) ( (u) -S "(u))du 0 |

ToL

Proof

It is enough to show that

,n . (C "(u)) (S(u) - S "(u)) Co T is bounded in probability

(henceforth denoted by BP). Let h"(v) = Sm(v) - (C (v)) - and h(v)

S(v) -C(v))- . Then

- (h(v) dS = 1 - T(r) < c, and(S~~ (v)), C cvT"

-lir h(v) dS m(v) li (1 - S n(r ) = 1 - () .

n-ow JO { )( (CvTC71ji - n 4

Thus the conditions of Theorem 2.1 which guarantee convergence of

h ( . 'T)Z ( T) are satisfied, except that h and hn are not

necessarily continuous but rather are left continuous. Lemma

2.A.6 of O'Sullivan (1986) shows that under these conditions

h 'T)Z ( * T) is stable (or 'tight') at the end-point r,

even if h and hn are only left continuous. That is to say, given

5> 0 and E> 0 3 t* < T and n* such that V n n*

S[. C n*-(S u( ))S(S( ())- S n t t *T I > C <

-fl(S(u) -Sn(u)) is BP as a consequence of Theorem 2.1.

Thus i -JC ())-S( ) _ S ()) Hc 1 0,T] is B.P. as required.

The conditions on W() implied by (2.4), (2.5) and (2.8)

certainly guarantee the desired weak convergence. However more

direct and interpretable conditions on W( ) are desirable to

facilitate the generation of SW statistics which are stable

. asymptotically. We seek conditions on W() which will yield SW

%.C,
• , " ' :,. - ,,. /'_. .. . ' .. . - , . ... . . . . . . ... . . . -,. .. , . . , - . .
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asymptotically stable for all choices of underlying survival and

4 censoring configurations (S n( .), C n( .)). In this sense the

proposed tests will be non-parametric.

Definition

For two sequences of stochastic processes X n(.) and Y n(.)

defined on [0, c) , by X n(.) = O(Yf(.)) we mean that 3 a constant r

such that, given c > 0 3 an integer n. with

V- P[ IXn(t) 1 -l p Yn(t) I Vt>0, Vnne] _ 1 -

Note that if X n(.) and Y n(.) are deterministic functions, then

the above definition reduces to the existence of a constant r

such that IX n(t) 1 - F JY "(t) I V t Z 0, V n.

Theorem 2.9

Suppose

W n(') = O(((Cn( * T)) 1 12), then on C[O, c]

'" ^T

- n W n(u) (S (u) - S n(u))du => U0 (t)

Under the stronger condition that

(A5) 3 8 > 0 with

4V, wn(.) = 0(((Cn( .fT)) ) .5

and

W() 0 o((6 ( . ),

then

N 0 TC(4(U) n Wu(u))(S(U) -S n(u))du 0.

-7,- - -,O .
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Proof

By (M3), (2.4) is satisfied. For some constant P

I IW (v) IS(v) dvJ I..2 ~' S(v)dvJ

t 0 (S(U)) 2(C (U)) dS(u) 5-'t0 (S(V)) 2 dS(v)

= 
2 C2(S( .)I[O T ]) < V

where 01 (S( )I[0 5 * < TrJ) denotes the variance calculated from

the survival function S( *)I[0 < T] and the equality follows

from Lemma A.2 of the appendix. Define(T
I IW(v) IS(v)dvj2

g (U) - 1[0 5 U < T
(S (u) 2(C (u))-

IW n(v) IS n(v )dv J2

g()= (S n(u) ) 2(C n(u) 1 [0 S ~]

Also let Yn= X~Ir "Xn< . n] and Y = XI[O 5 X < 7] where X,

and X have survival functions Sn( *) and S( *) respectively. The

survival functions for Y ,. and Y are (STt 5 ' ") and
d .

(S(t)-S( r)) for t > 0 respectively. Since Y n4 Y,g9is

continuous at 0, g has at most a countable number of disconti-

nuities on (0,6o) and S( *) is continuous on (0, an), then

d -

g (Y n) 4 g(Y). Given i >0 3 n0 and toa< 7 such that V n no

*Ply n 5to] > 1- E. Also, lim I Ig (x) - g(x) I 1 (, tI 0. Hence

9 gf(yy)-g (Y ) -*0 and so g n(y r) 4 g(Y). Boundedness of gfl(yn)

uniformly in n yields lim E (g. (yr) )=E (g (Y) ) and hence (2. 5) .
n -

Finally we need to verify that the stronger condition -

* (A5) yields (2.3). (2.8) is a trivial consequence of (M4) unless

*~4 r,, '
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C ( T A 7%) = 0, in which case we note that r = T Thus suppose

C( T) = 0 and T = TC. Given i >0 3 t d< T such that 0 < (C (t 0) '

< V2.

W(u) - W "(u) W(u) - W n(u)

(C (u)) 0oT A TCI 4C (u)) r co,t 0  A TATC]

W(u) - W n(u)
+

-C n ( u ) A t 0 7 TC]

The first term on the right hand side converges to 0 in

probability as a consequence of (A4). For the second term 3

constants r1 and r2 such that

W (u) - W (u)

C (u) A

r "2 (C-(t 0) 8 + P1 ((Cn(t ) 
(C n(u) ) - rt ,n

5 P2  -'E + r,

with probability at least 1 - 3 c if n is large enough, using

Theorem 3.2.1 of Gill (1980) for the first component. Thus%A

W (u) - W n(u)
-u 0

-C nu)C toT I TC]

The final step in the derivation of asymptotic distribution

theory is to show that the contribution to SW over

(T - T C "'¢ T c) is asymptotically negligible.

WT c (u) (S (u)-S n(u))du W(u) (S (u)-S "(u))du
T * T' c "C T T T c

@4*

- ...
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fT
+ 4 -- T W(U) (S (U)-S n(u))du.

We will treat these two components separately.
Vm...

Lemma 2.10

If

((A6) - ) is BP, then

JTfT W(u)(S(u) - s(u))du -*0
TAT CA 7C

Proof.

For some constant r with high probability
,. .,.

W~ (u) (S (u) S Sn(u) )du5.,... J- c ,,I- ) I n[ [ ~~~ T T T A T W() C~ .- S"u.U ]

S (u) S n( I I0,?) Ij(T n  T) I and

PS(u) - S (u) 0, ) 4 0 by Gill (1980) Theorem 4.1.1.

Remark. The uniform consistency of S() on [0, T) is stated but

not proved in the reference cited above. A slight modification
. of the proof of Theorem 1, page 304, Shorack and Wellner (1986)

yields the result. An alternative proof may be obtained from the

author and will be included in a forthcoming monograph by

Fleming, T.R. and Harringdon, D.P. Condition (A6) holds very

generally at least under a fixed configuation, as is shown in

.- ' O'Sullivan (1986) using some results from extreme-value

Lemma 2.11I

(A7) If T I 2 assume that 41( -r" -r) is bounded, then
1 2

A,.

-%-" % - - . ,. - -A . - - . . , - " .
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41 c p(U) (S (U) S n(u) du 4 0
Tn 

AT c

Proof.

(2.12) T W(u) (S(u) - S n(u))du = TC W(u)S u)du.
• .. " r AT c

Under a fixed configuration, either S( 7)=0 so that (2.12) is

identically zero, or S( T)>0. In this case

lim P[S(T) = 0] = 0, Jim P[C(T) = 01 = 1 and lim PLTC > T] = 0
n-*m n*w n c

so the result holds.

Under a sequence of local configurations, if Ti < T3_ i
P

for i = 1 or 2, then S( T) > 0 and T c  TC = Ti by Lemma A.I.

Hence lim P[T¢=T i 5 T A T ] = 1 and the result holds. If
=n-* isc 1 2

1 T2 = T it i enough to consider 7 < T V n.
Cit scnsdrT

C A

n W(u)S n(u)du 5 +( Tn - T)S n ( W(u)TTnAT c  1 2 ( n IT )

If S(T) = 0 then the result is proven. Otherwise S( T)>0 and

C n( r) = 0 for n large enough. In this case C( rn) 4 0 sincePp
C(u) - C n(u) I Cor 0, and I (u) II0

[ TnT 
ci

We are finally in a position to give asymptotic distri-

bution theory for SW. The natural condition

ni(A8) lim -= Pj > 0

n -) n

is imposed. Note, that the assumptions listed so far were given

without regard to a group subscript i. We assume that the condi-

tions hold for both groups i = 1,2.

%,"
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.' %.
Lemma 2.13

rTc (S - 2) - W(S - s )du N(O, a2

''1T 2'S)) 2 S
2 Ti (f W(v)S(v)dv)

where 0.2 = - - dS (U)
S W 0  2S U d 2-C •

V. i=l

Proof.

. By Theorem 2.9 and independence

n;n ATW n(U) (S 1(u) -S (u) ) du - W n(u) 2(u)-S (u))u
n n 1 + n 2  2

=> P P2 U 1(t) + 4 P1 U 2(t) on C[O,o].

p

That T C -4 TCI the sequence is tight in C[O, o] and Theorem

- 4.2 of Billingsley 1968 together imply

T A T C AT C T T ATc
n 1n 2 ( -W n(u) A2 (u) -S n(u))du~W nc) u _Snu) du - Suc~u- c)d
n 1 + n2 tj 0  1 2

44p 2 U I(Tc U 2 ( T )

P24 P2 u(T 1) + p, U 2 (T 2 ).

V. Theorem 2.9, Lemma 2.10 and Lemma 2.11 then yield the required

result.

Having established the asymptotic behaviour of the

numerator the next task is to propose consistent estimators of

[A -.

"'P - . . .Q

- -V-V . " . - ." . *" '- - -' . -. -. '-." ."."-. - ." . ."- .. ". - - . .
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" 'p.. 2
Sv• Let

2 AT AE )2
A -- n (Tu W(v)S i (v)dv) A

= - P3-i ds 0)U p P_ n i - A A _
JO S i (u)Si(u)Ci(u)

S^2

where pj = n Vn. CUP is termed the unpooled variance estimator.

In uncensored data with W(.) = 1, T W(u)Si(u)du = Xi, the sample

mean from the ith group and Lemma A.2 yields

i i AA v2 ni 2
nj ] W(v)S (v)dv) A x - x

-1 AiA dS i(v) =

n1 S i(u)S (u) C (u) j=l

the usual sample variance of survival times in the i group.
A,2

Thus up is the natural estimator of the variance of SW at least

in this classical case.

Under the null hypothesis it is tempting to substitute

S P, the Kaplan-Meier estimator calculated using the two samples

A ^2
pooled, for Si in .up The resulting

7 _- dS P(u)
n-l P3-1P n - A1

i=1 tO S P(u) S P(U) C 1 (u)

is termed the pooled variance estimator. Indeed simulation
A^2

results suggest that v is a better standardization factor for SW
t2

than (r. under the null in many cases in small sample. We defer

discussion of small sample properties to another paper however.

Theorem 2.14

0,2 p 2
(i) cup ,w
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n n

Under H : IS 2 =S V n

A2 p 2
(ii) -P W_

The proof of Theorem 2.14 is somewhat technical and is given in

O'Sullivan (1986). Consistency of e is proven only under the

null hypothesis since general results on the consistency of the

Kaplan-Meier estimator are known only under the random censorship

model. Unless the survival distributions in the two groups are

equal or the censoring distributions in the two groups are equal

then the random censorship model does not hold in the pooled

simple. Consistency of the Kaplan-Meier is basic in deriving
2

consistency of the variance estimators. Thus, consistency of

is not proven in general but is shown only under the null.

Although consistency can also be shown for arbitrary config-

urations under the assumption of equal censoring distributions

n n
(C = C 2 V n), this assumption is very restrictive and we do not

consider it to be an important case.

3. NULL THEORY, CONSISTENCY AND EFFICACIES

The purpose of this section is to summarize the results

of Section 3 as they pertain to null distribution theory,

consistency and asymptotic behaviour under a sequence of local

alternatives. The following assumptions are made, for

i=1 and 2

(Al) T 5 r V n, lim rn = T,

0 0
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1(2) lim I IW (u) - W(u) I = 0 ,
n -) c

lir Sn(t) = Si(t) and limr C(t) = Ci(t) Vt e [0, ri],

(A3) Ti < w, I IW(u) I I 0, i < CD ,

(A4) IW(u) - W(u) I I c0,TA % 4 0

(A5) 38 > 0 such that

W ) = 0(((C n.5+)

i( -A ri))

AA

and W(.) = O(((Ci(')) ) .5+3)

(A6) (T - 7i) is bounded in probability

n n
(A7) If Ti = T2 then 4i ( 1 - T2) is bounded

n i
(A8) lim _= Pi > 0.

n4w n, + n2

Under a fixed configuration (Al), (A2) and (A7) are

redundant, and (A6) holds except in pathological cases. In

practice Ti < coand (A5) implies that W(.) is bounded. (A8) also

holds in general since the design of the experiment will usually

ensure that (n V/n) is a fixed positive fraction. Thus, only (A4)

and (A5) need be of real concern for the purposes of null

distribution theory and for consistency.

For a sequence of local alternatives it is most natural

04

. ., - . . .. . .. - . ' -'--
,~* *JA* ~ A*%
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to consider the censoring distributions as fixed and the

alternatives are specified in terms of the convergent sequences

of survival functions. In most cases of practical interest for

i=l and 2, C i(Ti) = 0 and S j(ri) > 0, i.e. there is a positive

probability of surviving past the end of the study. Thus even

under a sequence of configurations (Al) and (A7) are redundant in

n
most cases of interest since T i = -r V n, i = 1 and 2. As

discussed above for a fixed configuration (A) and (A8) are

generally satisfied in practice. Thus for a sequence of local

alternatives only (A2), (A4), (A5) and (A6) are of any real

concern in general.

2'Let SW uP SW/ and SW = SW/Na
up p

Theorem 3.1

(i) Under the null hypothesis

d d
SW u P  - N(0,1), and SW P  -) N(0,1).

(ii) A two-sided test based on SWUP or SW p is consistent against

any fixed alternative such that J 0 W(u)(S 1(u) - S 2 (u))duj > 0

(iii) If under a sequence of local alternatives, for some bounded

function D(.) on [0, T),

n 1n

(S 1 (u) - S 2 (U)) D(u)
~n1 + n 2

uniformly on [0, T,), then

04
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dW 0 (u) D(u) du

SW~ - N

N~ SW

Proof

* (i) This is a trivial consequence of Lemma 2.13 arnd Theorem 2.14

A ?P 2 2
(ii) --) as <cso that aUPis BP. Also,

2 P 2PI%Iu + d P_ _

U Jo SP(U) S P(U) C I(u) C 2 (u)

S (v) dv

H P S p(u) for some constant

to S (u) S P(U)

F with probability at least 1 - e V n n

T V T~ 2<

Thus it remains to show that ISWI P 6

I ~CAT
I (u)W) (S 1 (u) S 2 (u))du + (S 1 (u)- 2 (u)u

% J1o

+W()-W()( J12 (U)(5 12(U) du (u)u U)- ()d

C C

* The first term converges in probability to zero by (A3) and (A4).

Lemma A.1 and boundedness of W( *) prove that the last term

Pconverges to zero in probability. Similarly since T, C -)T unless

T< T3 -iwith Si(Ti) 0 and Ci(Ti) =0 (Lemma A.1), then the

o IP



second term also is asymptotically negligible except perhaps in

this special case. In this special case, (taking i=l without

loss of generality),

JT (U) (S I U) - S 2U ) du = 2W(u)S 2(u)du

.(C (T,)) " IT5+ - T 1 j for some constant r,

P
4 0

by consistency of C 1( r 1 ) for C 1(I). Thus

F, 1 + n 2 SW 4 W(u) (S 1(u) - S 2(u))du > 0

and hence Isw 14 .

(iii) By Lemma 2.13 and Theorem 2.14 it is enough to show that

nn 2"'" W(U) (S I (U) -S 2(U))du WUDud

-2 n 1 + n 2 0 Td

Now,

n In2  n
(Uu - f2UW(u)D(u)du.

a 1 + n 2

j.. 1(u) -S 2(u) )du - W(u)D(u)du,

n n0

because p[T c > 71, -* 0. To see this note that under a sequence

of local alternatives T¢ > T. can only happen if Tj < T3-i, for

i=l or 2, with C j( Ti) = 0 and S( Tj) > 0, in which case

eZ N
0 ;,- .:;,; :;,..,. .k :v , _,. ,.-,....:-.'.5-:..-, .-. ,-..,......... .. < ..... , .... .,.-..-..



p[C (ri) = 0] - 1.

0
¢ ,

1 T¢C

',"-'n 1n 2 ^nn

- (W(u) - W(U)) (S 1 (u) -S 2(U) du 0
n I + n 2 O

In n2 n
since I IS n(u) - S 2(u) 1 (0,? is bounded and (A4)

. n + n 2

holds. Thus (4.2) is asymptotically equivalent to

C A TC C
n in 2 n n

n" 2  W(u) (S 1 (U)-S 2(u))du - W(u)D(u)du.

"n + n 2

a ic 
p

= - W(U) D(u)du 4 0

ITc

Note that e(SW" U = 2 is termed the efficacy ofNotethate(SWu 2sv

SW P under the sequence of alternatives specified by D(.).

%-

4. EFFICIENT WEIGHT FUNCTIONS

The objective in this section is to find a weight

function W apt( ) which maximizes e(SW over all possible weight

functions W(') for a fixed S(.), Cl(.) and C 2(') and for local

alternatives specified by D(.). Since e(SWUP) is invariant under

scalar multiplication of W(.) the constraint is imposed

..
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(4.1) 1 0,~2 - ~ )~)- dS (u).
40 S(u)SC 1 (u) C 2(U)

Direct maximization of (I CW(u)D(u)du) 2 with respect to W(-)
0

-~ subject to a 2 =1 is a difficult problem in calculus of varia-

tions and indeed the Euler-Lagrange equations are in general not

solvable. An alternative approach is to transform the problem to
'TC

the maximization of e(SWUP) with respect to h( *) f.t W(u)S(u)du,

subject to the additional constraint that h( ic) =0. Some

* regularity will be required. The optimal h( *) is denoted by

/ h 0opt(

Lemma4.

D(u)
If lim -.- < ,S( *) and D( *) are differentiable and

U *T S(u)

d S(u) 0 VU ([0,,7) , then

.ddu

2 d L

S (u)CI(u) C 2(U) du 'S (u)
h 0 t(u) I U < < C

Pic 1 (U) + pfC2 (u) d -(S(u))
du

h opt( TC) O_0

* Proof

Let V(u) =D(u)/S(u). Since D(0) =0, V(O) =0 and

integration by parts yields



-. - -

cW(U)D(u)du = - V(u)dh(u) =i h(u)V'(u)du

where V'(u) = d (V(u)). Let A(u)= - d (S(U))s P (u) + pF((u)

du ~S 2 (u) C (u) C (u)

Then

JW(u)D(u)du, = -(u) (u) h(u)du

-0
'c (V' (u) o C

du A(u)h (u)du
JO A(u) , J

T (v'(u)) 2

= _du

J0 A(u)

where the first inequality is an application of the Cauchy-

Shwartz inequality and the second equality follows from the

constraint (4.1). The inequality is an equality if and only if

V' (u)
S A(u) h(u), u e [0, T,).

If 1ir h 0 pt(u) * 0 then the solution requires h opt to
U 1Tc

have a mass point at TV. If censoring is continuous at T, or

S( 7c) = 0 then certainly lim hot (u) = 0 if V'(u) is bounded

on some ( T - , c) > 0. However if h opt is not continuous

at 7, then an optimal weight function W() will not exist. Under

the assumption that h 0 pt( *) is differentiable then the optimal

weight function W opt which maximizes e(SW) is given by

0.!

w%, A.!
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- - d(D(t)/S(t)
1S 1(t) C 1 (t)C 2 (t) dt

W 0 pt(t) ~-d
St(t) dt d S (t)

LpIC ItM + p2C 2 (t) dt

Even if an optimal weight function exists, W pt(') need

not satisfy the reguiarity conditions of section 3. For example,

Wopt(') need be bounded on [0, T¢). However it is clear from

Corollary 2.3 that the weaker conditions (2.4) and (2.5) will

yield weak convergence for

n 1n 2 W 0 pt(u) ((S I(u) -S 2(u) )-(S 1(u)-S 1(u) )du

n1 n 2 10,2 nl + n 2

p

since W Opt(') is deterministic and T 1AT 2 7 = T 2. Under a

sequence of local alternatives T = To, so that it's asymptotic

efficacy is given by e(SW 'p) Thus W opt(') I [ . T CIT 2] truly

yields an optimal SW-statistic for a given S, C 1 and C 2 and

sequence of local alternatives specified by D, under these mild

conditions.

Such optimal weight functions do not however yield non-

parametric statistics, in the sense that for a fixed Wopt, weak

convergence of SW is not guaranteed for all choices of (S, C 1,

C 2). It is still informative to calculate the optimal weight

function and indeed the behaviour of a particular non-parametric

SW-statistic can be explained in part by a comparison of the

nonparametric weight function with the optimal one.

A nonparametric weight function which we propose for

general use is given by

1% ."%
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In uncensored data Wc(') = 1 so that the corresponding SW

procedure is essentially a generalization of the z-test to

censored data. In the following example we compare the behaviour

of this SW statistic, and the optimal SW statistic to the locally

.- most powerful test under the proportional hazards alternative

.4,

with equal censoring distributions, namely the Logrank test.

Example 4.3

Let S,(t) = (S 0 (t)) c > -1. A sequence of local pro-

portional hazards alternatives is given by S n(.) = S 0( )

S () =S (') with a n = . n i + n 2 for some constant a- For
2

n n 2

any t such that S 0(t) > 0 then

n 1n 2 n I n 2(S I(t) - S (t)) = - aS O(t)log S o(t) + 0

1 +  n 2 n n

- - S 0(t)logS 0 (t) = D(t). If S(t)loqS(t) i < then the

convergence is uniform on the set A.

If the underlying survival distributions are Weibull,

k k
S 0 (t) = e . k > 0, then D(t) t e and the convergence is

uniform on [0, m). Simple algebra yields W 0 p,(t) = t in

uncensored data and Wpt(t) = 1 + k(t - t)t 1-1, t ( '0,t ",

under equal uniform censoring on :0,t,!. The asymptotic efficac'y

S%
1.A

.. "","""", """" .""'' = , '."" a ," "- .. "" "-" "". ". " '""- " . • " -, " "-- - - - - '



of the (most efficient) Logrank statistic is given by

" Io C 1(U) C 2(U)
e(Lgk) = - dS o(u) (Gill 1980),

JO p1C(u) + 2C p(u)1 2

so that the asymptotic efficiencies (A.E.) of SW, and SWopt are

given by e(SW C)/e(Lgk) and e(SW ,pt)/e(Lg) respectively. These

were calculated under a variety of configurations. The results

are tabulated in Table 1.

Table 1

Asymptotic Relative Efficiencies under Weibull Proportional
Hazards Alternatives

(k,t 1) AE(Wc) AE(W op)

(.5,1) .98 1.00
(.5,2) .99 1.00

(.5,3) .99 1.00

.5, ,) .80 1.00

(1,1) .94 1.00
(1,2) .97 1.00

1, 3) .98 1.00
(, t) 1.00 1.00

(2,1) 87 1.00
(2,2) .92 1.00
(2,3) .93 1.00

(2, j .91 1.00

(3,1) .83 1.00
(3,2) .87 1.00
(3,3) .86 1.00
(3, .) .84 1.00

denotes the uncensored case

In all cases examined SW opt is fully efficient an( SW

maintains high efficiency across this broad range of survival

*%



configurations. In the classical exponential scale family with

no censoring W. pt(') = 1 - and the z-test is in fact

optimal. For values of k greater than unity the z-test loses

efficiency in uncensored data. The ortimal weight function

emphasizes later differences in the survival functions more than

early differences and behaves less like Wc(') = 1 as k increases.

In censored data the AE of SW c also decreases as k increases,

again because W. mimics the behaviour of W 0 Pt more closely for

small values of k than it does for large values.

CONCLUDING REMARKS

From the point of view of the applied statistician the

SW-statistics are an intuitively appealing class of statistics

for the two-sample survival analysis problem. Motivation for

these statistics, results from small sample simulation studies

and some ideas on the choice of desirable weight functions from

an applied point of view will be presented in a forthcoming paper

by the author. Extensions to the k-sample problem have also been

developed (O'Sullivan, 1986).

APPENDIX

Lemma A.1

PT C *

unless perhaps if T, < T3L i 1 or 2, with S,(r,) = 0 and

%4
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C (Tt) = 0.

Proof.

P
If "r " 72then since T cTe,T 2} and T i -

) T then

P
T 4 T. Thus, suppose T < T2. If ¢ = T2, then C 1( r) > 0

and S 1( T) = 0. Hence, P[Tc = T ] - P[C 1(T l) = 0] + P[T 1 
- T 21

4 0 by consistency of C j(T 1) for C ( , and PITc = T 21 -- 1. In

the case that T, < T2 and TC - T 1 then either C 1( TI) > 0,

C 1(T)= 0 and S 1(T1) > 0, or C1 (r1 ) = 0. In the former case,

P[T C = T 2] 5 P[s j(T 1) = 0] + P[T 2 - T 1] 4 0. In the latter case

p
if we also assume that S 1( T7) > 0 then again s I(T 1) 4 S I( T 1) > 0

so that PT= T 2] 40, and T¢ - = TV The only case

remaining is that of T, ?< , S 1( T) = 0 and C 1( T1) = 0. In

general there is no guarantee that T¢ converges in this case.

Lemma A.2

If S = 1 - F is an arbitrary right continuous survival

function on [0, m and the variance of F denoted by o2 is finite,

then

I S(u)du

- dF(v)

J0 S(v)S "(v)

Proof

S du'I

For any x e [0, ) let a,2  dF(v). Let
SS(v)S (v)

(T,; n=l,2,...) be a sequence of real numbers in [0,a)) such that

%'" -

'a.. - % Q .- m" . . . . . .o . . = . . . . % .= . - .o .
= %. 

. . . .
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T n, < T V n, (T n) is increasing and 1 rn T n T =sup (s: S (s) >0)

S~ (u) du
TC2)~v _ _ dF (v)

J ~ S I S(u) du~ ds (V)

= v 2 S (u)u du ((vS( ) d
v + 2 ~v)S()d

S (V) 0

IP- ( S (u) du)J + 2S vdu)Sv)

To

Ir S S(u)d + I S~ud =v £v 2 F
n~0 00

and

li S() V2= j ( r + IU 2 dF(u)

n -0 0 n -*wD T

If T< cD, then

limI (v d = 2S -T)+ T 2d (u fu 2dF (u).
n - c 0 0 0

If T = o, then

2
urn T S(T ) =0 since a 2 < CD

4 n-c n

and

@IS



1, ft

3-.

Tn
lir u 2dF(u) = I udF(u).
n-w 0 0

Hence

lir .2 = I u 2 dF(u) - ( u dF(u)) 2 =2

nw T n 0 0

Urn(, = S(u)du) 2

But lim a2 = dF(v) by the monotone
n- w T n S(v) S -(v)

convergence theorem yielding the desired result.

eO
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